Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.500
Filter
1.
Microb Cell Fact ; 23(1): 127, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698430

ABSTRACT

BACKGROUND: Methane is a greenhouse gas with a significant potential to contribute to global warming. The biological conversion of methane to ectoine using methanotrophs represents an environmentally and economically beneficial technology, combining the reduction of methane that would otherwise be combusted and released into the atmosphere with the production of value-added products. RESULTS: In this study, high ectoine production was achieved using genetically engineered Methylomicrobium alcaliphilum 20Z, a methanotrophic ectoine-producing bacterium, by knocking out doeA, which encodes a putative ectoine hydrolase, resulting in complete inhibition of ectoine degradation. Ectoine was confirmed to be degraded by doeA to N-α-acetyl-L-2,4-diaminobutyrate under nitrogen depletion conditions. Optimal copper and nitrogen concentrations enhanced biomass and ectoine production, respectively. Under optimal fed-batch fermentation conditions, ectoine production proportionate with biomass production was achieved, resulting in 1.0 g/L of ectoine with 16 g/L of biomass. Upon applying a hyperosmotic shock after high-cell-density culture, 1.5 g/L of ectoine was obtained without further cell growth from methane. CONCLUSIONS: This study suggests the optimization of a method for the high production of ectoine from methane by preventing ectoine degradation. To our knowledge, the final titer of ectoine obtained by M. alcaliphilum 20ZDP3 was the highest in the ectoine production from methane to date. This is the first study to propose ectoine production from methane applying high cell density culture by preventing ectoine degradation.


Subject(s)
Amino Acids, Diamino , Methane , Methylococcaceae , Amino Acids, Diamino/metabolism , Amino Acids, Diamino/biosynthesis , Methane/metabolism , Methylococcaceae/metabolism , Methylococcaceae/genetics , Fermentation , Biomass , Genetic Engineering , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Metabolic Engineering/methods , Batch Cell Culture Techniques
2.
Mar Pollut Bull ; 202: 116299, 2024 May.
Article in English | MEDLINE | ID: mdl-38581736

ABSTRACT

The neurotoxin ß-N-methylamino-L-alanine (BMAA) has emerged as an environmental factor related to neurodegenerative diseases. BMAA is produced by various microorganisms including cyanobacteria and diatoms, in diverse ecosystems. In the diatom Phaeodactylum tricornutum, BMAA is known to inhibit growth. The present study investigated the impact of BMAA on the diatom Thalassiosira pseudonana by exposing it to different concentrations of exogenous BMAA. Metabolomics was predominantly employed to investigate the effect of BMAA on T. pseudonana, and MetaboAnalyst (https://www.metabo-analyst.ca/) was used to identify BMAA-associated metabolisms/pathways in T. pseudonana. Furthermore, to explore the unique response, specific metabolites were compared between treatments. When the growth was obstructed by BMAA, 17 metabolisms/pathways including nitrogen and glutathione (i.e. oxidative stress) metabolisms, were influenced in T. pseudonana. This study has further determined that 11 out of 17 metabolisms/pathways could be essentially affected by BMAA, leading to the inhibition of diatom growth.


Subject(s)
Amino Acids, Diamino , Cyanobacteria Toxins , Diatoms , Metabolomics , Neurotoxins , Diatoms/drug effects , Neurotoxins/toxicity
3.
Front Immunol ; 15: 1360068, 2024.
Article in English | MEDLINE | ID: mdl-38596666

ABSTRACT

The complex interplay between genetic and environmental factors is considered the cause of neurodegenerative diseases including Parkinson's disease (PD) and Amyotrophic Lateral Sclerosis (ALS). Among the environmental factors, toxins produced by cyanobacteria have received much attention due to the significant increase in cyanobacteria growth worldwide. In particular, L-BMAA toxin, produced by diverse taxa of cyanobacteria, dinoflagellates and diatoms, has been extensively correlated to neurodegeneration. The molecular mechanism of L-BMAA neurotoxicity is still cryptic and far from being understood. In this research article, we have investigated the molecular pathways altered by L-BMAA exposure in cell systems, highlighting a significant increase in specific stress pathways and an impairment in autophagic processes. Interestingly, these changes lead to the accumulation of both α-synuclein and TDP43, which are correlated with PD and ALS proteinopathy, respectively. Finally, we were able to demonstrate specific alterations of TDP43 WT or pathological mutants with respect to protein accumulation, aggregation and cytoplasmic translocation, some of the typical features of both sporadic and familial ALS.


Subject(s)
Amino Acids, Diamino , Amyotrophic Lateral Sclerosis , Cyanobacteria , Parkinson Disease , Humans , Amyotrophic Lateral Sclerosis/pathology , alpha-Synuclein , Cyanobacteria Toxins , Amino Acids, Diamino/toxicity
4.
Sci Rep ; 14(1): 8017, 2024 04 05.
Article in English | MEDLINE | ID: mdl-38580836

ABSTRACT

Cyanobacteria produce neurotoxic non-protein amino acids (NPAAs) that accumulate in ecosystems and food webs. American lobsters (Homarus americanus H. Milne-Edwards) are one of the most valuable seafood industries in Canada with exports valued at > $2 billion. Two previous studies have assessed the occurrence of ß-N-methylamino-L-alanine (BMAA) in a small number of lobster tissues but a complete study has not previously been undertaken. We measured NPAAs in eyeballs, brain, legs, claws, tails, and eggs of 4 lobsters per year for the 2021 and 2022 harvests. Our study included 4 male and 4 female lobsters. We detected BMAA and its isomers, N-(2-aminoethyl)glycine (AEG), 2,4-diaminobutyric acid (DAB) and ß-aminomethyl-L-alanine (BAMA) by a fully validated reverse phase chromatography-tandem mass spectrometry method. We quantified BMAA, DAB, AEG and BAMA in all of the lobster tissues. Our quantification data varied by individual lobster, sex and collection year. Significantly more BMAA was quantified in lobsters harvested in 2021 than 2022. Interestingly, more BAMA was quantified in lobsters harvested in 2022 than 2021. Monitoring of lobster harvests for cyanobacterial neurotoxins when harmful algal bloom events occur could mitigate risks to human health.


Subject(s)
Amino Acids, Diamino , Decapoda , Neurotoxicity Syndromes , Animals , Male , Female , Humans , Nephropidae/metabolism , Ecosystem , Neurotoxins/toxicity , Amino Acids, Diamino/metabolism , Seafood/analysis , Decapoda/metabolism , beta-Alanine
5.
Microb Cell Fact ; 23(1): 88, 2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38519954

ABSTRACT

BACKGROUND: The halophilic bacterium Halomonas elongata is an industrially important strain for ectoine production, with high value and intense research focus. While existing studies primarily delve into the adaptive mechanisms of this bacterium under fixed salt concentrations, there is a notable dearth of attention regarding its response to fluctuating saline environments. Consequently, the stress response of H. elongata to salt shock remains inadequately understood. RESULTS: This study investigated the stress response mechanism of H. elongata when exposed to NaCl shock at short- and long-time scales. Results showed that NaCl shock induced two major stresses, namely osmotic stress and oxidative stress. In response to the former, within the cell's tolerable range (1-8% NaCl shock), H. elongata urgently balanced the surging osmotic pressure by uptaking sodium and potassium ions and augmenting intracellular amino acid pools, particularly glutamate and glutamine. However, ectoine content started to increase until 20 min post-shock, rapidly becoming the dominant osmoprotectant, and reaching the maximum productivity (1450 ± 99 mg/L/h). Transcriptomic data also confirmed the delayed response in ectoine biosynthesis, and we speculate that this might be attributed to an intracellular energy crisis caused by NaCl shock. In response to oxidative stress, transcription factor cysB was significantly upregulated, positively regulating the sulfur metabolism and cysteine biosynthesis. Furthermore, the upregulation of the crucial peroxidase gene (HELO_RS18165) and the simultaneous enhancement of peroxidase (POD) and catalase (CAT) activities collectively constitute the antioxidant defense in H. elongata following shock. When exceeding the tolerance threshold of H. elongata (1-13% NaCl shock), the sustained compromised energy status, resulting from the pronounced inhibition of the respiratory chain and ATP synthase, may be a crucial factor leading to the stagnation of both cell growth and ectoine biosynthesis. CONCLUSIONS: This study conducted a comprehensive analysis of H. elongata's stress response to NaCl shock at multiple scales. It extends the understanding of stress response of halophilic bacteria to NaCl shock and provides promising theoretical insights to guide future improvements in optimizing industrial ectoine production.


Subject(s)
Amino Acids, Diamino , Halomonas , Sodium Chloride/pharmacology , Sodium Chloride/metabolism , Halomonas/genetics , Halomonas/metabolism , Osmotic Pressure , Gene Expression Profiling , Peroxidases/metabolism
6.
Ocul Surf ; 32: 182-191, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38490477

ABSTRACT

PURPOSE: To explore novel role and molecular mechanism of a natural osmoprotectant ectoine in protecting corneal epithelial cell survival and barrier from hyperosmotic stress. METHODS: Primary human corneal epithelial cells (HCECs) were established from donor limbus. The confluent cultures in isosmolar medium were switched to hyperosmotic media (400-500 mOsM), with or without ectoine or rhIL-37 for different time periods. Cell viability and proliferation were evaluated by MTT or WST assay. The integrity of barrier proteins and the expression of cytokines and cathepsin S were evaluated by RT-qPCR, ELISA, and immunostaining with confocal microscopy. RESULTS: HCECs survived well in 450mOsM but partially damaged in 500mOsM medium. Ectoine well protected HCEC survival and proliferation at 500mOsM. The integrity of epithelial barrier was significantly disrupted in HCECs exposed to 450mOsM, as shown by 2D and 3D confocal immunofluorescent images of tight junction proteins ZO-1 and occludin. Ectoine at 5-20 mM well protected these barrier proteins under hyperosmotic stress. The expression of TNF-α, IL-1ß, IL-6 and IL-8 were dramatically stimulated by hyperosmolarity but significantly suppressed by Ectoine at 5-40 mM. Cathepsin S, which was stimulated by hyperosmolarity, directly disrupted epithelial barrier. Interestingly, anti-inflammatory cytokine IL-37 was suppressed by hyperosmolarity, but restored by ectoine at mRNA and protein levels. Furthermore, rhIL-37 suppressed cathepsin S and rescued cell survival and barrier in HCECs exposed to hyperosmolarity. CONCLUSION: Our findings demonstrate that ectoine protects HCEC survival and barrier from hyperosmotic stress by promoting IL-37. This provides new insight into pathogenesis and therapeutic potential for dry eye disease.


Subject(s)
Amino Acids, Diamino , Cell Survival , Epithelium, Corneal , Osmotic Pressure , Humans , Cell Survival/drug effects , Epithelium, Corneal/metabolism , Epithelium, Corneal/drug effects , Epithelium, Corneal/pathology , Cells, Cultured , Amino Acids, Diamino/pharmacology , Interleukin-1/metabolism , Interleukin-1/pharmacology , Enzyme-Linked Immunosorbent Assay , Microscopy, Confocal , Cell Proliferation/drug effects , Cytokines/metabolism
7.
Metab Eng ; 82: 238-249, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38401747

ABSTRACT

Ectoine, a crucial osmoprotectant for salt adaptation in halophiles, has gained growing interest in cosmetics and medical industries. However, its production remains challenged by stringent fermentation process in model microorganisms and low production level in its native producers. Here, we systematically engineered the native ectoine producer Halomonas bluephagenesis for ectoine production by overexpressing ectABC operon, increasing precursors availability, enhancing product transport system and optimizing its growth medium. The final engineered H. bluephagenesis produced 85 g/L ectoine in 52 h under open unsterile incubation in a 7 L bioreactor in the absence of plasmid, antibiotic or inducer. Furthermore, it was successfully demonstrated the feasibility of decoupling salt concentration with ectoine synthesis and co-production with bioplastic P(3HB-co-4HB) by the engineered H. bluephagenesis. The unsterile fermentation process and significantly increased ectoine titer indicate that H. bluephagenesis as the chassis of Next-Generation Industrial Biotechnology (NGIB), is promising for the biomanufacturing of not only intracellular bioplastic PHA but also small molecular compound such as ectoine.


Subject(s)
Amino Acids, Diamino , Halomonas , Halomonas/genetics , Amino Acids, Diamino/genetics , Anti-Bacterial Agents , Biopolymers
8.
Sci Total Environ ; 922: 171255, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38417517

ABSTRACT

The neurotoxin ß-N-methylamino-L-alanine (BMAA) has been deemed as a risk factor for some neurodegenerative diseases such as amyotrophic lateral sclerosis/parkinsonism dementia complex (ALS/PDC). This possible link has been proved in some primate models and cell cultures with the appearance that BMAA exposure can cause excitotoxicity, formation of protein aggregates, and/or oxidative stress. The neurotoxin BMAA extensively exists in the environment and can be transferred through the food web to human beings. In this review, the occurrence, toxicological mechanisms, and characteristics of BMAA were comprehensively summarized, and proteins and peptides were speculated as its possible binding substances in biological matrices. It is difficult to compare the published data from previous studies due to the inconsistent analytical methods and components of BMAA. The binding characteristics of BMAA should be focused on to improve our understanding of its health risk to human health in the future.


Subject(s)
Amino Acids, Diamino , Neurotoxins , Animals , Humans , Neurotoxins/chemistry , Amino Acids, Diamino/toxicity , Amino Acids, Diamino/chemistry , Cyanobacteria Toxins , Oxidative Stress
9.
Environ Toxicol Pharmacol ; 107: 104399, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38403141

ABSTRACT

ß-N-methylamino-l-alanine (BMAA) has been shown to inhibit vesicular monoamine transporter 2 (VMAT2), thereby preventing the uptake of monoaminergic neurotransmitters into platelet dense granules and synaptic vesicles. The inhibition is hypothesized to be through direct association of BMAA with hydroxyl groupꟷcontaining amino acid residues in VMAT2. This study evaluated whether BMAA-induced inhibition of VMAT2 could be prevented directly by co-incubation of BMAA with amino acids, and if this protection was specific for BMAA inhibition of VMAT2. l-tyrosine, and to a lesser extent l-serine, was able to prevent BMAA-induced VMAT2 inhibition in a concentration-dependent manner, whereas neither l-threonine nor amino acids without side chain hydroxyl groups could reduce this inhibition. Reserpine-induced VMAT2 inhibition was unaffected by any of the amino acids. These data support the hypothesized interaction between BMAA and hydroxyl groupꟷcontaining amino acids and suggests that this interaction might be leveraged to protect against the toxicity of BMAA.


Subject(s)
Amino Acids, Diamino , Amino Acids , Amino Acids/pharmacology , Vesicular Monoamine Transport Proteins , Amino Acids, Diamino/toxicity , Tyrosine , Neurotoxins/metabolism
10.
PLoS One ; 19(2): e0299351, 2024.
Article in English | MEDLINE | ID: mdl-38421984

ABSTRACT

Osteoarthritis (OA) is a chronic degenerative disease that primarily includes articular cartilage destruction and inflammatory reactions, and effective treatments for this disease are still lacking. The present study aimed to explore the protective effects of ectoine, a compatible solute found in nature, on chondrocytes in rats and its possible application in OA treatment. In the in vitro studies, the morphology of the chondrocytes after trypsin digestion for 2 min and the viability of the chondrocytes at 50°C were observed after ectoine treatment. The reactive oxygen species (ROS) levels in chondrocytes pretreated with ectoine and post-stimulated with H2O2 were detected using an ROS assay. Chondrocytes were pretreated with ectoine before IL-1ß stimulation. RT‒qPCR was used to measure the mRNA levels of cyclooxygenase-2 (COX-2), metallomatrix proteinase-3, -9 (MMP-3, -9), and collagen type II alpha 1 (Col2A1). In addition, immunofluorescence was used to assess the expression of type II collagen. The in vivo effect of ectoine was evaluated in a rat OA model induced by the modified Hulth method. The findings revealed that ectoine significantly increased the trypsin tolerance of chondrocytes, maintained the viability of the chondrocytes at 50°C, and improved their resistance to oxidation. Compared with IL-1ß treatment alone, ectoine pretreatment significantly reduced COX-2, MMP-3, and MMP-9 expression and maintained type II collagen synthesis in chondrocytes. In vivo, the cartilage of ectoine-treated rats exhibited less degeneration and lower Osteoarthritis Research Society International (OARSI) scores. The results of this study suggest that ectoine exerts protective effects on chondrocytes and cartilage and can, therefore, be used as a potential therapeutic agent in the treatment of OA.


Subject(s)
Amino Acids, Diamino , Cartilage, Articular , Osteoarthritis , Animals , Rats , Chondrocytes , Matrix Metalloproteinase 3 , Collagen Type II , Cyclooxygenase 2/genetics , Hydrogen Peroxide , Reactive Oxygen Species , Trypsin , Osteoarthritis/drug therapy , Interleukin-1beta
11.
Plant Physiol Biochem ; 207: 108388, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38295528

ABSTRACT

Grass pea has the potential to become a miracle crop if the stigma attached to it as a toxic plant is ignored. In light of the following, we conducted transcriptome analyses on the high and low ODAP-containing cultivars i.e., Nirmal and Bidhan respectively in both normal and salt stress conditions. In this study, genes that work upstream and downstream to ß-ODAP have been found. Among these genes, AAO3 and ACL5 were related to ABA and polyamine biosynthesis, showing the relevance of ABA and polyamines in boosting the ß-ODAP content in Nirmal. Elevated ß-ODAP levels in salt stress-treated Bidhan may have evolved tolerance by positively regulating the expression of genes involved in phenylpropanoid and jasmonic acid biosynthesis. Although the concentration of ß-ODAP in Bidhan increased under salt stress, it was lower than in stress-treated Nirmal. Despite this, the expression of stress-related genes that work downstream to ß-ODAP was found higher in stress-treated Bidhan. This could be because stress-treated Nirmal has lower GSH, proline, and higher H2O2, resulting in the development of severe oxidative stress. Overall, our research not only identified new genes linked with ß-ODAP, but also revealed the molecular mechanism by which a low ß-ODAP-containing cultivar developed tolerance against salinity stress.


Subject(s)
Amino Acids, Diamino , Lathyrus , Lathyrus/genetics , Lathyrus/metabolism , Neurotoxins/analysis , Neurotoxins/metabolism , Amino Acids, Diamino/analysis , Amino Acids, Diamino/metabolism , Hydrogen Peroxide/metabolism , Salt Stress/genetics
12.
Chemistry ; 30(23): e202304163, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38258332

ABSTRACT

Ectoine synthase (EctC) catalyses the ultimate step of ectoine biosynthesis, a kosmotropic compound produced as compatible solute by many bacteria and some archaea or eukaryotes. EctC is an Fe2+-dependent homodimeric cytoplasmic protein. Using Mössbauer spectroscopy, molecular dynamics simulations and QM/MM calculations, we determined the most likely coordination number and geometry of the Fe2+ ion and proposed a mechanism of the EctC-catalysed reaction. Most notably, we show that apart from the three amino acids binding to the iron ion (Glu57, Tyr84 and His92), one water molecule and one hydroxide ion are required as additional ligands for the reaction to occur. They fill the first coordination sphere of the Fe2+-cofactor and act as critical proton donors and acceptors during the cyclization reaction.


Subject(s)
Amino Acids, Diamino , Hydro-Lyases , Iron , Molecular Dynamics Simulation , Amino Acids, Diamino/chemistry , Amino Acids, Diamino/metabolism , Iron/chemistry , Iron/metabolism , Intramolecular Transferases/metabolism , Intramolecular Transferases/chemistry , Biocatalysis , Bacteria/enzymology , Catalysis , Cyclization , Ligands , Water/chemistry
13.
Folia Microbiol (Praha) ; 69(2): 247-258, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37962826

ABSTRACT

Ectoine is an important natural secondary metabolite in halophilic microorganisms. It protects cells against environmental stressors, such as salinity, freezing, drying, and high temperatures. Ectoine is widely used in medical, cosmetic, and other industries. Due to the commercial market demand of ectoine, halophilic microorganisms are the primary method for producing ectoine, which is produced using the industrial fermentation process "bacterial milking." The method has some limitations, such as the high salt concentration fermentation, which is highly corrosive to the equipment, and this also increases the difficulty of downstream purification and causes high production costs. The ectoine synthesis gene cluster has been successfully heterologously expressed in industrial microorganisms, and the yield of ectoine was significantly increased and the cost was reduced. This review aims to summarize and update microbial production of ectoine using different microorganisms, environments, and metabolic engineering and fermentation strategies and provides important reference for the development and application of ectoine.


Subject(s)
Amino Acids, Diamino , Amino Acids, Diamino/metabolism , Biotechnology , Fermentation
14.
Folia Microbiol (Praha) ; 69(1): 133-144, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37917277

ABSTRACT

Streptococcus thermophilus, the only Streptococcus species considered "Generally Recognized Safe", has been used widely in the food industry. This bacterium is one of the most valuable industrial lactic acid bacterial species. Due to the importance of this bacterium in industrial applications, it should be stored for a long time without losing its metabolic properties. The present study aimed to investigate the cryoprotectant effect of three compatible solutes (ectoine, trehalose, and sucrose) on bacterial cells stored at different temperatures (frozen at -80 °C or freeze-dried and subsequently stored at +4, -20, and -80 °C) for three months. The bacterial cells were tested for cell viability, bile salt tolerance, and lactic acid production before and after processing. The highest cell viability, bile salt tolerance, and lactic acid production were obtained with ectoine and under frozen (storage at -80 °C) conditions. In freeze-dried and subsequently stored at various temperatures, the best preservation was obtained at -80 °C, followed by -20 °C and +4 °C. Moreover, when ectoine's preservation potential was compared to other cryoprotectants, ectoine showed the highest preservation, followed by trehalose and sucrose. Although ectoine has a variety of qualities that have been proven, in the current work, we have shown for the first time that ectoine has cryoprotectant potential in yogurt starter cultures (S. thermophilus).


Subject(s)
Amino Acids, Diamino , Lactobacillales , Trehalose , Cryopreservation , Cryoprotective Agents/pharmacology , Lactic Acid , Sucrose
15.
Bioresour Technol ; 393: 130016, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37979886

ABSTRACT

Extremophilic bacteria growing in saline ecosystems are potential producers of biotechnologically important products including compatible solutes. Ectoine/hydroxyectoine are two such solutes that protect cells and associated macromolecules from osmotic, heat, cold and UV stress without interfering with cellular functions. Since ectoine is a high value product, overviewing strategies for improving yields become relevant. Screening of natural isolates, use of inexpensive substrates and response surface methodology approaches have been used to improve bioprocess parameters. In addition, genome mining exercises can aid in identifying hitherto unreported microorganisms with a potential to produce ectoine that can be exploited in the future. Application wise, ectoine has various biotechnological (protein protectant, membrane modulator, DNA protectant, cryoprotective agent, wastewater treatment) and biomedical (dermatoprotectant and in overcoming respiratory and hypersensitivity diseases) uses. The review summarizes current updates on the potential of microorganisms in the production of this industrially relevant metabolite and its varied applications.


Subject(s)
Amino Acids, Diamino , Ecosystem , Amino Acids, Diamino/chemistry , Amino Acids, Diamino/metabolism , Bacteria/metabolism
16.
Biotechnol Adv ; 70: 108306, 2024.
Article in English | MEDLINE | ID: mdl-38157997

ABSTRACT

As an amino acid derivative and a typical compatible solute, ectoine can assist microorganisms in resisting high osmotic pressure. Own to its long-term moisturizing effects, ectoine shows extensive applications in cosmetics, medicine and other fields. With the rapid development of synthetic biology and fermentation engineering, many biological strategies have been developed to improve the ectoine production and simplify the production process. Currently, the microbial fermentation has been widely used for large scaling ectoine production. Accordingly, this review will introduce the metabolic pathway for ectoine synthesis and also comprehensively evaluate both wild-type and genetically modified strains for ectoine production. Furthermore, process parameters affecting the ectoine production efficiency and adoption of low cost substrates will be evaluated. Lastly, future prospects on the improvement of ectoine production will be proposed.


Subject(s)
Amino Acids, Diamino , Amino Acids, Diamino/chemistry , Amino Acids, Diamino/metabolism , Fermentation , Metabolic Networks and Pathways
17.
J Nat Prod ; 87(1): 50-57, 2024 01 26.
Article in English | MEDLINE | ID: mdl-38150306

ABSTRACT

Ectoine is a central osmolyte in marine plankton due to its excellent cytoprotective traits and its multifunctional roles supporting the survival of microalgae and bacteria under unfavorable environmental conditions. The protective effect of ectoine toward several kinds of stresses stirred interest in biotechnology, pharmacy, and other fields including cosmetics. Also, its hydroxylated derivative, 5-hydroxyectoine, exhibits functions similar to ectoine. Here we introduce a molecular networking-based approach to expand the family of ectoine derivatives from phyto- and bacterioplankton. A ZIC-HILIC separation protocol coupled with HRMS/MS-based molecular networking allowed us to identify the new ectoine derivative 1,4,5,6-tetrahydro-2-ethyl-4-pyrimidinecarboxylic acid, or 2-homoectoine (1). 1 is found in many algae including dinoflagellates, chlorophytes, and haptophytes. In axenic strains, the content of 1 is substantially lower. In accordance, we found that marine bacteria are prolific producers of the compound as well. This suggests that the microalgae with their associated microbiome have to be considered as sources of the compound. Increasing concentrations of the compound under high salinity suggest a role as a protectant against osmotic stress.


Subject(s)
Amino Acids, Diamino , Bacteria
18.
Toxicon ; 238: 107566, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38151204

ABSTRACT

The presence of neurotoxin ß-N-Methylamino-L-alanine (BMAA) in the seeds of Cycas sphaerica is reported for first time. We developed a UPLC-MS/MS method for BMAA quantification by derivatizing with dansyl chloride. The method successfully differentiated L-BMAA from its structural isomer 2,4-diaminobutyric acid (DAB). The extracting mixture 0.1M TCA: ACN 4:1 v/v had a recovery level of >95%. The method is a high throughput sensitive chromatographic technique with 16.42 ng g-1 Limit of Quantification. BMAA was present in the endosperm of C. sphaerica, and was not detected in the leaves and pith. Washing of seeds in running cold water for 48 h reduced BMAA content by 86%. The local communities also treat the seeds under running cold water, but only for 24 h. The results of the study thus validated the traditional BMAA removal process through cold water treatment, but recommend for increase in the treatment period to 48 h or more.


Subject(s)
Amino Acids, Diamino , Cyanobacteria Toxins , Cycas , Tandem Mass Spectrometry/methods , Cycas/chemistry , Chromatography, Liquid/methods , Liquid Chromatography-Mass Spectrometry , Amino Acids, Diamino/chemistry , Neurotoxins/analysis
19.
Sci Total Environ ; 913: 169694, 2024 Feb 25.
Article in English | MEDLINE | ID: mdl-38160842

ABSTRACT

In contrast to nitrification-denitrification microorganisms that convert ammonia nitrogen in hypersaline wastewater into nitrogen for discharge, this research utilizes sludge enriched with salt-tolerant assimilation bacteria (STAB) to assimilate organic matter and ammonia nitrogen in hypersaline wastewater into ectoine - a biomass with high economic value and resistance to external osmotic pressure. The study investigates the relationship between the synthesis of ectoine and nitrogen removal efficiency of STAB sludge in three sequencing batch reactors (SBR) operated at different salinities (50, 75, and 100 g/L) and organic matter concentrations. The research reveals that, under low concentration carbon sources (TOC/N = 4, NH4+-N = 60 mg/L), the ammonia nitrogen removal efficiency of SBR reactors increased by 14.51 % and 17.25 % within 5 d and 2 d, respectively, when salinity increased from 50 g/L to 75 g/L and 100 g/L. Under high concentration carbon sources (TOC/N = 8, NH4+-N = 60 mg/L), the ammonia nitrogen removal efficiency of STAB sludge in the three reactors stabilized at 80.20 %, 76.71 %, and 72.87 %, and the total nitrogen removal efficiency was finally stabilized at 80.47 %, 73.15 %, and 65.53 %, respectively. The nitrogen removal performance by ammonium-assimilating of STAB sludge is more sustainable under low salinity, while it is more short-term explosive under high salinity. Moreover, the intracellular ectoine concentration of STAB sludge was found to be related to this behavior. Empirical formulas confirm that STAB sludge synthesizes ectoine from nutrients in wastewater through assimilation, and intracellular ectoine has a threshold defect (150 mg/gVss). The ectoine metabolism pathways of STAB sludge was constructed using the Kyoto Encyclopedia of Genes and Genomes (KEGG). The ammonia nitrogen in sewage is converted into glutamic acid under the action of assimilation genes. It then undergoes a tricarboxylic acid cycle to synthesize the crucial precursor of ectoine - aspartic acid. Subsequently, ectoine is produced through ectoine synthase. The findings suggest that when the synthesis of intracellular ectoine reaches saturation, it inhibits the continuous nitrogen removal performance of STAB sludge under high salinity. STAB sludge does not actively release ectoine through channels under stable external osmotic pressure.


Subject(s)
Amino Acids, Diamino , Sewage , Wastewater , Sewage/microbiology , Ammonia/metabolism , Nitrification , Nitrogen/analysis , Bacteria/metabolism , Carbon , Bioreactors/microbiology , Denitrification
20.
Neurosci Lett ; 821: 137593, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38103629

ABSTRACT

The first mechanism of toxicity proposed for the cyanobacterial neurotoxin ß-N-methylamino-L-alanine (BMAA) was excitotoxicity, and this was supported by numerous in vitro studies in which overactivation of both ionotropic and metabotropic glutamate receptors was reported. However, the excitotoxicity of BMAA is weak in comparison with other known excitotoxins and on par with that of glutamate, implying that to achieve sufficient synaptic concentrations of BMAA to cause classical in vivo excitotoxicity, BMAA must either accumulate in synapses to allow persistent glutamate receptor activation or it must be released in sufficiently high concentrations into synapses to cause the overexcitation. Since it has been shown that BMAA can be readily removed from synapses, release of high concentrations of BMAA into synapses must be shown to confirm its role as an excitotoxin in in vivo systems. This study therefore sought to evaluate the uptake of BMAA into synaptic vesicles and to determine if BMAA affects the uptake of glutamate into synaptic vesicles. There was no evidence to support uptake of BMAA into glutamate-specific synaptic vesicles but there was some indication that BMAA may affect the uptake of glutamate into synaptic vesicles. The uptake of BMAA into synaptic vesicles isolated from areas other than the cerebral cortex should be investigated before definite conclusions can be drawn about the role of BMAA as an excitotoxin.


Subject(s)
Amino Acids, Diamino , Cyanobacteria Toxins , Glutamic Acid , Synaptic Vesicles , Neurotoxins/toxicity , Amino Acids, Diamino/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...